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Oscillating flow in a tapered channel was studied experimentally by observing the 
deformation of a dye streak within a Plexiglas channel during piston induced, 
volume-cycled oscillations. The observed steady streaming was compared to theor- 
etical calculations. Both the theoretical and experimental results show bi-directional 
drift for all frequencies, with characteristics dependent upon the value of the 
Womersley parameter, a = b(w/u)f .  For large values of a, e.g. a > 10, the fluid near 
the walls and along the centreline drifted towards the narrow end of the channel, 
while fluid in an intermediate region drifted towards the wide end of the channel. 
For small values of a, e.g. a < 5,  the fluid drifted towards the narrow end at the wall 
and the wide end of the channel along the centreline. Applications to mass transport 
in the lung are discussed. 

1. Introduction 
High-frequency ventilation (HFV) is of interest because of its potential clinical use 

during surgery and in the intensive-care setting. In  contrast to conventional 
ventilation, which mimics normal breathing, the high-frequency ventilator operates 
with tidal volumes much smaller than the anatomic dead space at rates of 5-30 Hz. 
HFV has been used successfully to ventilate dogs (Bohn et al. 1980) and humans 
(Butler et al. 1980). In  addition, HFV may decrease the risk of barotrauma to the 
patient, and has been shown to be useful in the care of neonates (Special conference 
report 1983). 

One fluid dynamic feature of HFV is the oscillatory gas flow in the neighbourhood 
of an airway bifurcation. In  this region the axial velocity profiles of inspiration differ 
from those of expiration, due to the curvature of the airways as well as the taper 
of cross-sectional area. This asymmetry of velocities leads to steady streaming in the 
axial direction. Haselton t Scherer (1982) observed such streaming in an experimental 
investigation of volume-cycled oscillatory flow in a model bifurcation. At lower 
Womersley numbers, a < 0(1), they found the streaming velocity profiles to be 
bi-directional and to correlate qualitatively with quasi-steady arguments. Fluid near 
the walls drifted towards the parent tube (negative drift) while fluid near the 
centreline drifted towards the daughter tubes (positive drift). For a % O(1) there 
were no conclusive observations or analysis. With the experiments of Scherer & 
Haselton (1982) i t  was shown that streaming behaviour can lead to the distribution 
of non-diffusive particles in a branching tube network model of a bronchial tree. 
Grotberg (1984) mathematically modelled the region near an airway bifurcation as 
a tapered channel and studied the volume-cycled flow through this geometry. 
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Although greatly simplifying the actual airway geometry, this model predicts steady 
streaming patterns for a < O( 1) that are consistent with the observations of Haselton 
& Scherer. The predictions for a >> 0(1) differ significantly from the low-frequency 
case, particularly in the reversal of drift direction near the centreline. 

Numerous studies of steady streaming in oscillatory flows have been made. 
Rosenblat (1959, 1960) and Jones & Rosenblat (1969) studied the streaming 
behaviour induced by a torsionally oscillated disk, while Riley (1965, 1967) and 
Stuart (1966) examined the steady streaming flow that exists adjacent to a cylinder 
oscillating along its diameter. This flow has also been experimentally investigated by 
Schlichting (1932) and Bertelsen (1974). In  addition, streaming appears in oscillating 
flow along a curved tube in the theory of Lyne (1970) and experiments by Bertelsen 
(1974). Hall (1974) presented a theory of pressure-cycled oscillatory flow within a 
tapered tube. His results show uni-directional streaming toward the wide end of the 
tube, indicating that the impedance to flow is greater in the direction of decreasing 
cross-section than in the opposite direction. For this reason the pressure cycling does 
not lead to fixed tidal volume oscillations. When fixed tidal volumes are imposed 
instead of pressure cycling, Grotberg’s results indicate the existence of bi-directional 
drift, and a flow reversal in the core region for a % 1. This analysis requires a double 
boundary layer: the Stokes layer, which describes the distance over which rapid 
variations of the oscillating velocity profile occur; and the drift layer, the distance 
over which rapid variations in the steady velocity profile occur. 

Double boundary layers have been calculated to exist in the oscillating cylinder 
and disk problems, studied by Stuart and Rosenblat, respectively. The characteristics 
of these layers, however, have never been accurately measured, although Bertelsen 
has shown similarity in the experimental behaviour of the outer region of the steady 
boundary layer of an oscillating cylinder with the predictions of Riley and Stuart. 
Budwig (1985) also observed the steady and unsteady boundary layers associated 
with oscillating fluid flow in a tapered tube. 

In this study we examine the flow in a tapered channel undergoing volume cycling. 
The dimensionless governing parameters in this problem are: the axial stroke 
distance, A, which measures the unsteady axial displacement relative to the channel 
depth; the lateral amplitude parameter, A = €A,  which measures the unsteady 
lateral displacement ; 8, the slope of the channel walls ; and finally the Womersley 
number, a = b(w/v) t ,  the ratio of unsteady to viscous effects. 

We study the flow in a Plexiglas channel of fixed linear wall taper by varying the 
piston amplitude, fluid viscosity, and frequency of oscillation, thus varying the 
parameters A,  A, and a. The fluid motion in each case is examined by the deformation 
of a tracer dye streak injected into the channel. Theoretical calculations were made 
of the Eulerian and Lagrangian velocity profiles following the analysis of Grotberg 
(1984), and extended by numerical calculation of the Lagrangian drift velocity 
profiles for stroke amplitudes of O(1). These results are then compared with the 
experimental data. 

2. Methods 
The experimental apparatus consists of three distinct parts. These are the channel, 

the drive mechanism, and the fluid measurement systems. 
The channel, constructed of ;-inch thick Plexiglas, consists of three sections, two 

straight sections separated by a tapered section and connected together by flanges. 
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The interior height of each of these sections is 60cm. The interior width of the 
tapered section varies linearly from 3 to 5 cm over a 20 cm distance. The straight 
sections have internal widths of 3 and 5 cm and are connected smoothly to the 
tapered section. The straight sections each have a length of 2 ft. A rectangular piston 
is positioned at the end of the wide parallel-walled section and is driven by a rod 
connected to the drive mechanism. Leakage around the piston rod is prevented by 
the use of a moveable seal consisting of a modified air cylinder. The displaced fluid 
flows through return tubes connected to the wide section behind the piston to the far 
end of the narrow section. This return tube mechanism serves to equalize the pressure 
across the piston, as well as eliminating the need for large reservoirs on each side of 
the channel. By removing the reservoirs the free surface effects are decreased, and 
pressure fluctuations are due largely to the dynamics of the flow field. A series of flow 
straighteners consisting of honeycombed aluminium and wire mesh are placed at the 
narrow end, and a slotted tube is used to smooth the flow entering and exiting the 
return system. This tube eliminates the eddy shedding that would otherwise occur 
at the junction of the channel and return flow systems. 

The drive mechanism consists of a Bodine series 500 Q-horsepower variable-speed 
motor, a Boston Reductor 50:l ratio turndown gear, and a variable amplitude 
'Scotch yoke' drive connected to the piston shaft. The drive system translates the 
rotational motion of the motor assembly into purely translational motion with a 
frequency equal to the fundamental driving frequency. Any harmonics are due to 
inaccuracies of machining, and were observed to be of very small magnitude. The 
amplitude setting of the cam drive has discrete positions, allowing for stroke 
amplitudes ranging from 0.25 to 1.5 in. in 0.25 in. increments. The complete drive 
mechanism is mounted to an aluminium platform to isolate the channel from 
mechanical vibration. 

The fluid motion is visualized by injecting a dye streak across the channel so that 
Lagrangian displacement may be observed. The dye used is a dilute solution of blue 
dye mixed with water and glycerine to match the fluid density in the channel as 
closely as possible. Because of imperfect matching and thermal effects, the injection 
fluid may have a slightly different density from the channel fluid. However, the 
channel has been designed so that flow conditions are essentially uniform for a wide 
band of vertical positions. Therefore, buoyancy-induced displacements in the vertical 
direction will not affect the axial displacements we seek. The displacement recording 
system is based on a Canon AE-1 camera with a 90 mm macro lens. The camera faces 
axially along the top of the channel, focused on a grid pattern held in the vertical 
plane. A beam splitter is placed a t  a 45" angle between the camera and grid such that 
the image of the dye streak is visible to the camera. The beam splitter is placed so 
that the optical path from the camera to the streak is equal to the path from the 
camera to the grid. Photographs have the image of the streak superimposed upon 
the image of the grid, and the grid pattern is then used to measure the displacement 
of various parts of the streak. The camera triggering mechanism allows photographs 
to be taken at any one or all of four piston positions - the two extreme, and the two 
mid-points of the piston stroke. Triggering is achieved by a cable release mounted 
to the cam drive mechanism, with round-head screws on the drive wheel acting as 
cams to press the cable release and activate the camera. This system ensures that 
the piston is in the same part of the piston stroke each time a photograph is taken. 
After each photograph, an auto-winder advances the film in the camera. Figure 1 is 
a schematic diagram of the apparatus and measurement systems. 
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FIGURE 1.  Schematic of apparatus. A is the measurement grid, B is the beam splitter, 
and C is the camera. 

The experiments in this study were designed to  vary the values of the dimensionless 
parameters 01 = b(w/u)l, the dimensionless frequency, and A = €A,  the lateral 
amplitude parameter. We performed experiments with mixtures of water and 
glycerine as the fluid, allowing the viscosity to  be changed between experiments. The 
viscosity was varied between v = 0.01 cmz/s and v = 0.10 cm2/s. By changing either 
the viscosity or the oscillation frequency a wide range of a was experimentally 
available. The tapered section has a linear taper with a slope of B = 0.05, and the 
representative half-width of the channel was chosen to be the half-width at the dye 
injection port, b = 2.0 cm. Experiments were conducted with piston amplitude 
oscillations of L = 1.5 in. and L = 1 in. The characteristic displacement length for 
the experimental configuration is defined as d = V / ( 2 b H ) ,  where V is the stroke 
volume, b is the half-width, and H is the height of the channel. Since the stroke 
volume may be found by V = WHL, where W is the width of the piston, the 
representative amplitude of the piston stroke is W L / ( 2 b 2 ) .  The experiments in this 
investigation have characteristic amplitudes of A = 2.38, and A = 1.59, and a range 
of a of 3 c a c 25. 
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FIQURE 2. Characteristic deformation profile after an integral number of oscillations. 
A = 1.59, E = 0.05. (a) a = 3.8; (b)  a = 17.4. 

3. Results 
The data collected during each experiment consist of a series of photographs 

showing the progression of a dye streak from its initial position as a straight line to 
the deformed profile that exists after each stroke. Examples of streak deformations 
after an integral number of piston oscillations for different values of a are shown in 
figure 2. Figure 2 ( a )  shows a streak deformation typical of values of a < 7, while 
figure 2 (b) shows a streak deformation typical of values of a > 10. For intermediate 
values of a, the profile is in transition between the low- and high-frequency 
characteristic profiles. 

The lengths W1* and W2*, as shown in figure 3, have been specified as characteristic 
of the streak’s deformation, and may be used for comparison between the experi- 
mentally discovered deformation profiles and the profiles determined by theoretical 
calculation. Figure 3 defines W1* and W2* for a streak typical of high-frequency 
oscillations; for low-frequency oscillations W2* equals zero, leaving W1* to describe 
the streak deformation. 
To quantify the rate of steady streaming, the rate of increase of W1* and W2* is 
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FIGURE 3. Streak deformation profile showing the definitions of W1* and W2*. 
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ROWRE 4. An example of the selection steady-state onset time and regression through the 
steady-state regime. Here an open circle represents data from the start-up transient, and the 
darkened circles represent the steady-state points. In this experiment A = 2.38, a = 14, 8 = 0.05. 

determined from measurements of sequential streak deformations and the period of 
oscillation. Since the initial deformation profiles in the high-frequency experiments 
show transient start-up behaviour instead of the desired steady-state response, it is 
necessary to analyse the data with the aim of extracting the steady-state deformation 
growth rate. This data analysis also helps minimize errors induced by triggering 
inaccuracies. 

To find the steady-state response of the flow, the values of W1* and W2* are 
examined versus time. For example, W1* is measured at each cycle beginning with 
start-up and plotted as in figure 4. A least-square linear regression is made of each 
grouping of four neighbouring points. The slopes of these regressions are compared 
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FIGURE 5(a, b) .  For caption see next page. 

to one another by taking the last three slopes, in time, and determining their average 
value and variance. The slopes of these regression curves are accepted as being 
effectively constant if the variance of their values is less than 15 % of their average 
value. If the slopes pass this variance test, an additional slope, moving sequentially 
towards the beginning of the experiment, is added into the average and variance 
calculations while dropping the last value, in time, that had been used in the previous 
calculation. The variance criterion is then tested again, and the procedure repeated 
until either all of the data points have been tested, or the variance test is failed. The 
time corresponding to the last accepted value of the slope is then selected as the onset 
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FIGURE 5. Streaming velocity us. a. Asterisks denote the experimental points, and the solid lines 
represent the results of the Lagrangian displacement calculations. (a) A = 1.59, E = 0.05; ( b )  
A = 2.38, E = 0.05; (c) A = 2.38, E = 0.05. 

time of the steady-state behaviour. Once the steady-state onset time is determined, 
the data within the steady-state regime are fit with a least-square linear regression 
curve. Finally, the experiment is accepted as valid only if the regression coefficient, 
Ra, of this regression is greater than 0.98. It is the slope of this regression that 
corresponds to the growth rate of the deformation characteristic, and is symbolized 
by Wl*(@ and W2*(8), the dimensional steady growth rate of W1* and W2*, 
respectively. An example of the data analysis method is shown in figure 4, indicating 
the 'selection of the steady-state onset time and the least-square regression of the 
steady-state data. 

The experimental results of J#'l*@)xb/u versus a for a dimensionless stroke 
amplitude of A = 1.59 are shown in the data points of figure 5(a) .  Figure 5 ( b )  and 
(c) shows the results of experiments of Wl*@) x b / u  and W2*(@ x b / v  versus a. 
respectively, for a dimensionless stroke amplitude of A = 2.38. 

4. Theory 
The fluid-flow problem is formulated in the same manner as Grotberg (1984)) with 

the flow confined between symmetrically tapered walls. The equations of motion and 
boundary conditions are scaled using the dimensionless variables 

U* V* p=-,  P* t = w t * ,  EX* Y* 
x=T' Y=b' u=u, m = -  U' P V  

where b is the half-width of the channel at x = 0, V is the tidal volume, d is a measure 
of the fluid displacement length, 
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FIQURE 6. Theoretically determined steady Eulerian velocity profiles. 
A = 0.26, E = 0.05, a = 3, 7,  and 10. 

U represents the velocity amplitude, 
U = d ,  

and 8 is the slope of the channel walls, assumed to be small. The stream-function 
equation, neglecting terms of 0(e2), is found, 

““YYt - @YYYY +a2A(@-y @xyy- @x @,,,) = 0, 

where the dimensionless parameters of this problem are 

4.1. Eulerian velocity solution, a < O( 1) 

The first- and second-order approximate solution of the stream-function equations 
are found using a regular perturbation method based upon the small parameter A, 

@(., Y ,  t )  = @,(x, y, t )  +A$,(x, 9, t)+O(A2). 

@,(z, y ,  t )  = (ao@) sinh (q) + b,(z)  y) eit + c.c., 

@ , ( X , Y , ~ )  = a,@, y)+b,(z)+c,(z)ya+(d,(~,y)+el(z)  y + f , ( z )  sinh (yy) )  eZit+c.c., 

(4.2) 

where a,, b,, a,, b,, c,, d,, el, andf, are found by satisfying the boundary conditions 
and constant stroke volume condition as outlined by Grotberg. This analysis shows 
that A*@., may be greater than A@, if a2A Q 1, and therefore the stream-function 

Briefly, the solution is of the form 

(4.1) 
and 
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solution presented is only guaranteed to be valid for values of a2h < 1.  We shall see 
that our experimental results show this restriction to be too severe in this application. 

From the stream-function solutions ((4.1) and (4.2)) it  can be seen that to 0(1) the 
stream-function oscillates at  the fundamental frequency. The O(h) solution, 
exhibits the non-linear behaviour of the flow, possessing both an unsteady component 
of twice the fundamental frequency and a steady component. The steady component 
of the O(h)  solution leads to the steady bi-directional streaming behaviour. Repre- 
sentative Eulerian steady streaming velocity profiles are shown in figure 6 for values 
of the dimensionless frequency, a, equal to 3, 7,  and 10 for A = 0.25, E = 0.05, and 
x = 0. From these profiles it is evident that the streaming behaviour changes both 
in magnitude and form with a. In particular, the profiles display a drift boundary 
layer near the wall which is much thicker than the Stokes layer by a factor l / h  
according to Grotberg (1984). In addition, the centreline velocity changes from 
positive to negative in the vicinity of a = 8.0. 

4.2. The Lagrangian velocity 

The trajectory of a non-diffusive contaminant is found from the Lagrangian 
description of the velocity field. This behaviour may be important to the under- 
standing of particulate deposition in the lung, as well as the immediate use of 
correlating the theoretical and experimental results of this study. 

For small amplitude oscillations the Lagrangian velocity field was found analyti- 
cally by Grotberg (1984). For large amplitude oscillations a numerical evaluation is 
used to yield the correct Lagrangian profiles. We use a fourth-order Rung-Kutta 
routine to integrate the equations 

dX 
- = u(X,  t ) ,  dt (4.3) 

over one oscillation cycle with an initially defined streak position. Here u(X, t )  is the 
Eulerian velocity to O(h) at x = X a t  time t ,  and X = X(Xo, t )  is the position of a 
particle whose position was Xo at time to.  To improve the accuracy of this calculation, 
the integration was completed with 10 and 20 steps per oscillation cycle, and then 
a linear Richardson’s extrapolation method was used to estimate the profile for zero 
step size. These deformation profiles were then used for comparison of the analytical 
and experimental results by dividing the displacements by the dimensionless period, 
2x, and thus determining the steady streaming velocities. 

Lagrangian velocity profiles for A equal to 2.5, E equal to 0.05 and values of a equal 
to 3, 7 ,  and 10 are shown in figure 7 for a streak of initial position at x = 0. To 
compare the experimental results with the theoretical calculations, the Lagrangian 
deformation profiles are calculated by numerical integration of (4.3) for amplitudes 
equal to those of the experiments and a range of a spanning the experimental values. 
From the calculated profiles the characteristic deformation lengths W1* and W2* are 
found and their velocities determined by division of the dimensionless period. For 
comparison with the experiments, both the experimental and theoretical deformation 
velocities were rescaled by the velocity b / v .  The solid lines in figure 5(a) ,  ( b )  and ( c ) ,  
represent these solutions. 

Table 1 compares the magnitude of the experimental parameters with the range 
of values necessary for the guaranteed validity Lagrangian drift velocity profiles as 
determined by the numerical evaluation of (4.3). The experimental parameters are 
all in the correct range with the exception of a, in which case the experimental range 
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FIGURE 7. Numerically calculated steady Lagrangian velocity profiles. 
A = 2.5, E = 0.05, a = 3, 7 ,  and 10. 

-4.0 

P f b  

Parameter Theoretical approximation Experimental value 

E 6b1 E = 0.05 
A A x O(1) (i) A =  1.58 

(ii) A = 2.38 
A = EA h b l  (i) A = 0.079 

(ii) A = 0.119 
a = a(w/v)t  a x  0(1) (i) 3 < a <  11 

(ii) 8 < a < 21 

TABLE 1. Comparison of the theoretical assumptions of parameter magnitudes with those used 
in the experiments in this study 

is beyond that acceptable for exact comparison of the theoretical and experimental 
results. 

Figure 8 ( a )  shows the dependency of ml*(8) x b/v upon stroke amplitude for 
values of a equal to 3 , 7 ,  and 10. The dependency of l@2*@) x b/v on stroke amplitude 
for a = 10 is shown in figure 8 ( b ) .  In  these figures the values for A < 0.8 are 
determined by the analytical solution of the Lagrangian velocity profiles, and the 
values for A > 0.8 were found by the numerical evaluation of (4.3). 

5. Discussion 
The results of the experimental investigation of oscillating flow in a tapered 

channel show a high degree of similarity with the corresponding theory. This is 
especially evident in the comparison of the dye streak deformation profiles and the 
numerically calculated profiles. Of particular interest is the direction in which the 
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FIGURE 8. Streaming velocity 08. amplitude, A ,  for a = 3, 7 and 10. Asterisks reprewnt the 
analytical calculations, a solid line represents the results of the numerical evaluation of the 
Lagrangian displacements. 

particles stream, and the changes in direction that occur with a. This behaviour is 
not predicted by the quasi-steady theory proposed by Haselton & Scherer (1982), and 
has previously not been observed. 

Examining the more exact relationship between the theoretical predictions and 
experimental observations shown in figure 5 (u-c), we see that although the theoretical 
results are not exact, they show a strong correlation with the experimental results. 
In  general, all experimentally determined velocities are less than the corresponding 
theoretical results. This discrepancy may be due to fluid circulation within the finite 
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length channel, a feature neglected by the theory. In addition, the oscillating fluid 
is only partly within the tapered boundaries because of the straight sections. 
Consequently, the overall tendency for drift is somewhat reduced from the idealized 
theory. In  figure 5 ( a )  the experimental results mimic the general theoretical 
dependency on a. In  particular, both the experimental and theoretical results show 
wfrl*(@ x b/v as monotonically increasing in a with similar slopes. The similarity is 
especially evident by the mutual appearance of a plateau in the range of a between 
5 and 10. Figure 5 ( b )  and ( c )  also show a good correspondence between theory and 
experiment. Both w1*(@ x b/v and w2*@) x b/v show remarkable agreement for 
a < 13, while the behaviour at a > 13 shows a divergence in which the theoretical 
predictions are uniformly greater than the observed behaviour. 

The high-frequency results, characterized by figure 2 (b) , show bi-directional drift 
with rapid variations of the deformation profile within the drift layer near the wall. 
Such a layer is not evident in the low-frequency experiments, characterized by figure 
2 (a ) .  The creation of the drift boundary layer at large values of 01 is one of the most 
interesting features of the flow studied here. It is the genesis of this layer than leads 
to the reversal of flow in the centre region, as can be seen from the a = 7 curves in 
figures 6 and 7. This behaviour may be observed in Haselton & Scherer's Y-tube 
experiments. For low frequencies a bolus of dye placed near the carina can be seen 
to propagate towards the parent tube near the wall, and towards the daughter tube 
near the centre. For high-frequency experiments a jet in the direction of the parent 
tube is evident near the wall, and in the centre the fluid velocity has reversed from 
the low-frequency case, and is now in the direction of the parent tube. Between these 
two layers there seems to be a narrow region of flow towards the daughter tubes. 

As discussed above, the asymptotically determined Eulerian velocity field may 
only be guaranteed valid for a2 -4 1/A.  For the experiments represented in figure 5 (a), 
the calculations may only be valid for a 4 3.5. In  addition, the calculations 
represented in figure 5 ( b )  and ( c )  may only be valid for values of a 4 3.0. It is 
evident, however, that there is close agreement with the experimental results beyond 
these limits of a. This result suggests that the analytical solutions remain accurate 
for values of a greater than expected. 

For values of a % 1 a similar perturbation method could be used to derive a 
velocity field to compare to these experiments. The solution for a % 1 in Grotberg 
(1984) cannot be directly compared to these experiments, however, since it assumes 
a parabolic wall shape, while experiments in this study were completed in a channel 
with a linear taper. Although that solution is not an exact representation, it does 
exhibit a number of features observed during the experiments. In particular, the 
singular perturbation analysis shows a drift layer near the wall with peaks in opposite 
directions, one adjoining the wall with a velocity towards the narrow end of the 
channel followed by a peak with velocity in the direction of increasing width. In 
addition, there is a distinct core region in the centre of the channel. This behaviour 
is evident in the experimental results. 

Figure 8 (a) and (b) shows the behaviour of F#'l*@) x b/v and w2*(@ x b/v versus 
dimensionless amplitude, A. From the analytic solution the dependency for small 
values of A is seen to be A2. For values of A > 1 this amplitude dependence continues 
as is indicated by the solid lines in figure 8 ( a )  and (b). This result is important 
because it indicates that the efficiency of streaming as a convective mechanism 
increases with the square of stroke volume. In fact, this result is in agreement with 
the results of Tarbell, Ultman & Durlofsky (1982) who, in experiments of oscillating 
flow in a branching network of tubes, found the efficiency of transport of a non- 

3 Y L M  172 
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diffusive dye to  be proportional to V1.e2. Exact comparison cannot be made, since 
the experiments on branching networks use circular tubes and the cross-sectional 
increase in area is abrupt, with an increase of 100 yo a t  each bifurcation. 

I n  this study we have examined Lagrangian displacements of a dye streak due to 
oscillatory flow in a tapered channel. The purpose here was to isolate one of the 
features of oscillatory flow in the region of a tube or airway bifurcation where the 
cross-sectional area increases. These results are of direct use for understanding 
transport of non-diffusive substances such as airborne particulates. The transport of 
diffusible gases such as 0, and CO, in this model may be determined by inserting 
the velocity field derived by Grotberg (1984), and verified in these experiments, into 
the convection-diffusion equation, and solving the boundary-value problem. The 
corresponding convection-diffusion system for a tapered tube has been solved by 
Godleski & Grotberg (1985) who show that the area expansion affects transport of 
diffusible substances primarily by modifying the interaction of axial convection with 
diffusion across streamlines. The role of steady streaming was small, of O(e3),  but 
could be much larger if the posed end concentrations were radially varying rather 
than uniform. This more difficult problem remains to be investigated. 
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